II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

GEOTECHNICAL ENGINEERING (CIVIL ENGINEERING)

	D	Duration: 3 hours Max. Max.							Iarks	larks: 70		
 Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions. 2. All parts of Question must be answered in one place. 												
	B	BL – Blooms Level CO – Co										<u>;</u>
* Assume the suitable data as per Indian Standards *												
										BL	СО	Max. Marks
UNIT-I												
1	a)	Define sul	bmerg	ed de	ensity	of	soil	. Dec	duce a	L3	CO1	6 M
		relation between submerged density and saturated										
		density.										
	b)) The results of Sieve Analysis performed on soil are							L4	CO1	8 M	
		given below	V.	1			1					
		Sieve Size(mm)	4.75	2.36	1.18	0.6	0.3	0.15	0.075			
		Mass of soil retained (g)	66	31	35	55	50	65	60			
	The mass of dry sample taken for the test is 400g.											
		i. Draw	-	_					-			
		 list the percentages of gravel, sand, and Fines (Silt & Clay). ii. Determine the uniformity coefficient and coefficient of curvature. 							d Fines			
									nt and			
OR												

PVP 20

2	a)	A soil sample was collected from an embankment	L3	CO1	8 M
		and obtained the following data: sample size 38			
		mm dia. \times 76 mm height and had a bulk weight of			
		170.2 g, oven-dry weight of 145.5 g and $Gs = 2.68$.			
		Determine water content, dry density, bulk density,			
		void ratio, and degree of saturation.			
	b)	Discuss in detail about the significance of Atterberg	L2	CO1	6 M
		limits of soils.			
	1				
	1	UNIT-II			
3	a)	A constructed flow net shows $N_f=6$ and $N_d=16$. The	L3	CO2	7 M
		seepage velocity and hydraulic gradients are 0.001			
		cm/sec and 1:2500 respectively. A maximum of 8.0			
		m water level is allowed in the earthen dam.			
		Compute the seepage loss of the dam. Also, draw a			
		neat sketch for the same.			
	b)	A sand sample of 40 cm^2 cross sectional area and	L3	CO2	7 M
		18 cm long was tested in a constant head			
		permeameter. Under a head of 60 cm, the discharge			
		was 150 ml in 8 min. The dry weight of sand used			
		for the test was 1150 g and $Gs = 2.68$. Determine			
		the hydraulic conductivity (cm/sec), discharge			
		velocity and the seepage velocity.			
		OR			
4	a)	Compute the total, effective and pore pressure at a	L3	CO2	7 M
		depth of 20 m below the bottom of a lake 6 m deep.			
		The bottom of lake consists of soft clay with a			
		thickness of more than 20 m. The average water			
		content of the clay is 35% and the specific gravity			
		of the soil may be assumed to be 2.65.			
	b)	Determine the average coefficient of permeability	L4	CO2	7 M
		in the horizontal and vertical directions for a			
		deposit consisting of three layers of thickness 5m,			
		1m and 2.5m and having the coefficient of			

		permeability of 3 x 10 ⁻² mm/sec, 3 x 10 ⁻⁵ mm/sec			
		and 4 x 10^{-2} mm/sec respectively. Assume the			
		layers are isotropic.			
	1				
		UNIT-III		,	
5	a)	The following are the results of the Modified	L4	CO3	7 M
		compaction test results of Silty soil:			
		Water content 5.7 9.5 12.6 14.5 16.7 18.8			
		Mass of dry 1.7 1.90 2.03 1.99 1.96 1.92			
		soil (kg)			
		If the volume of the mould was 970 cc and the specific gravity of solids was 2.67 find out the			
		specific gravity of solids was 2.67, find out the maximum dry density also plot 5% air voids line &			
		85% saturation line.			
	b)		L2	CO3	7 M
		a diagram.			
		OR		11	
6	a)	What are the principles, purpose and affects of	L2	CO3	7 M
		compaction?			
	b)	A sand fill compacted to a bulk density of 18.84	L3	CO3	7 M
		kN/m ³ is to be placed on a compressible saturated			
		marsh deposit 3.5 m thick. The height of the sand			
		fill is to be 3 m. If the volume compressibility of the deposit is 7×10^{-4} m ² /kN, estimate the final			
		settlement of the fill.			
		UNIT-IV			
7	a)	A particular soil failed under a major principal	L3	CO4	7 M
		stress of 300 kN/m^2 with a corresponding minor			
		principal stress of 100 kN/m ² . If, for the same soil,			
		the minor principal stress had been 200 kN/m ² ,			
		determine the major principal stress would have			
		been if (i) $\varphi = 30^{\circ}$ and (ii) $\varphi = 0^{\circ}$			

	b)	Describe the triaxial shear test. What are the advantages of triaxial shear test over direct shear test?	L2	CO4	7 M
	•	OR			
8	a)	Dry sand samples were tested in a large shear box, 25 cm \times 25 cm and the following results were obtained: Normal Load (kN) 5 10 15 Peak shear load (kN) 5 10 15 Ultimate shear load (kN) 2.9 5.8 8.7 Determine the angle of shearing resistance of the sand in the dense and loose states.	L4	CO4	7 M
	b)	The principal stresses at a point in a material are 80 kN/m^2 and 40 kN/m^2 . Determine the normal, shear and resultant stresses on a plane inclined at 30 ⁰ to the major principal plane. Find also for this plane, the maximum value of obliquity.	L4	CO4	7 M
		UNIT-V			
9	a)	A concentrated load of 22.5 kN acts on the surface of a homogeneous soil mass of large extent. Evaluate the stress intensity at a depth of 15 meters and (i) directly under the load and (ii) at a horizontal distance of 7.5 meters. Use Boussinesq's equations.	L3	CO5	8 M
	b)	What will be the stress matrix at a point in the body?	L2	CO5	6 M
		OR	•	1	
10	a)	What is Soderberg-GoodMan model, explain with neat sketch.	L3	CO5	7 M
	b)	A concentrated load of 40 kN acts on the surface of a homogeneous soil mass of large extent. Find the stress intensity at a depth of 17 meters and (i) directly under the load and (ii) at a horizontal distance of 9.0 metres. Use Boussinesq's equations.	L4	CO5	7 M